HNSW.jl
Approximate Nearest Neighbor Searches using the "Hierarchical Navigable Small World" (HNSW) algorithm as described in https://arxiv.org/abs/1603.09320 .
Highlights
- Written in Julia - no non-julian dependencies
- Supports incremental index creation
- Works with arbitrary distance functions
- Is data-agnostic - can work with data of arbitrary types given a corresponding
distance function
Creating an Index
An Index in this library is a struct of type HierarchicalNSW which can be constructed using:
hnsw = HierarchicalNSW(data; metric, M, efConstruction)- data: This is an- AbstractVectorof the data points to be used.
- metric = Euclidean(): The metric to use for distance calculation. Any metric defined in- Distances.jlshould work as well as any type for which- evaluate(::CustomMetric, x,y)is implemented.
- M = 10: The maximum number of links per node on a level >1. Note that value highly influences recall depending on data.
- M0 = 2M: The maximum number of links on the bottom layer (=1). Defaults to- M0 = 2M.
- efConstruction = 100: Maximum length of dynamic link lists during index creation. Low values may reduce recall but large values increase runtime of index creation.
- ef = 10: Maximum length of dynamic link lists during search. May be changed afterwards using- set_ef!(hnsw, value)
- m_L = 1/log(M): Prefactor for random level generation.
- max_elements = length(data): May be set to a larger value in case one wants to add elements to the structure after initial creation.
Once the HierarchicalNSW struct is initialized the search graph can be built by calling
add_to_graph!(hnsw [, indices])which iteratively inserts all points from data into the graph. Optionally one may provide indices a subset of all the indices in data to partially to construct the graph.
Searching
Given an initialized HierarchicalNSW one can search for approximate nearest neighbors using
idxs, dists = knn_search(hnsw, query, k)where query may either be a single point of type eltype(data) or a vector of such points.
A simple example:
using HNSW
dim = 10
num_elements = 1000
data = [rand(dim) for i=1:num_elements]
#Intialize HNSW struct
hnsw = HierarchicalNSW(data; efConstruction=100, M=16, ef=50)
#Add all data points into the graph
#Optionally pass a subset of the indices in data to partially construct the graph
add_to_graph!(hnsw)
# optionally with a progress notification:
# step = (num_elements) ÷ 100
# add_to_graph!(hnsw) do i
#   if iszero(i % step)
#     @info "Processed: $(i ÷ step)%"
#   end
# end
queries = [rand(dim) for i=1:100]
k = 10
# Find k (approximate) nearest neighbors for each of the queries
idxs, dists = knn_search(hnsw, queries, k)